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Data mining through ontology derived gene network modelling

Q-omics is an Al-powered omics data mining platform that helps cancer researchers identify " ) _
tumor-specific targets, prognostic biomarkers and underlying mechanisms - without requiring ~1 billion public omics data Ontologies & Gene sets
bioinformatics expertise.

The platform integrates over 1 billion multi-modal omics data points and computes 30 billion
cross-associations reinforced by pan-cancer consensus scores. These associations are stored in
MetaDBs, forming a foundational resource for robust target-biomarker discovery and

Al models:

~30 billion proprietary
mechanism studies. meta data LLMs & Graph transformers

At its core, the NetCrafter module builds ontology-derived gene networks to reveal
functional gene modules and mechanistic hotspots across cancer types.

The OmixMind assistant enables "text-to-data mining" automatically generating research
trends, Q-omics workflows and interpretations from natural-language queries.

Biological Large Data Model (Bio-LDM)

Q-omics is evolving into Bio-LDM, a foundation model for autonomous omics data
interpretation and novel hypothesis generation.
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